
28 The Delphi Magazine Issue 51

Under Construction:
Delphi 5 InternetExpress, 2
by Bob Swart

Delphi 5 InternetExpress com-
bines the WebBroker technol-

ogy with the MIDAS technology,
producing HTML and XML as the
final result for ultra-thin clients.

Last Time
Last month we saw how to build a
master-detail relationship on a
MIDAS Application Server, and
provide it (using a WebConnection
component) to a client application.
The client consisted of an
XMLBroker and MidasPageProducer,
extending the existing WebBroker
technology to produce a web
server application. XML was used
in two ways, both as the data
format for the packets that were
sent from the DataSetProvider to
the XMLBroker (and back), and as
the data format for the actual data
embedded inside the HTML web
pages that we could see inside the
web browser.

This Time
So we are left with a few loose ends
to explore. Like how to limit the
amount of (XML) data being sent
from the web server to the
browser, and how to handle
update (reconcile) errors. And I
also want to show you ways to use
the InternetExpress component
without actually using a MIDAS
licence (wouldn’t that be fun).

AutoSessionName
Before we start I’d like to apologise
for something that I forgot to men-
tion last time (but hopefully read-
ers that started to play with
InternetExpress noticed it them-
selves). As usual with multi-user,
multi-threaded and multi-session
BDE applications, we need to place
a TSession component on the
(remote) data module and set the
AutoSessionName to True. I com-
pletely forgot to mention that last
time, and since I never ran the

application more than once (some-
thing we will do this time), I never
got into trouble. However, with a
Session and AutoSessionName set to
True, at least we know for sure that
each individual request will be
handled in the context of its own
session, so no session conflicts will
occur inside the BDE.

Alternatively, we could have
used an ADOConnection component
and two ADOTables, but then it
wouldn’t have been possible to
demonstrate the Visual Data
Module Designer. Due to a bug in
the latter, we can’t see the fields of
ADOTables, nor ‘draw’ master-detail
relationships between ADO tables
in Delphi 5. This bug has been con-
firmed by Inprise and is said to be
fixed in an internal build of Delphi 5
(so I guess it’s only a matter of time
until the first Delphi 5 Update Pack
will be available).

Unlimited Data
Apart from the Session (which
wasn’t present), our master-detail
demonstrated in the last issue pre-
sented us with a web page that
didn’t flicker or need a refresh to
show other data. In fact, all the
data was already provided (in XML
packets) inside the web page. If we
run the web server again and save
the generated web page in a local
file, it turns out that this local file is
almost 100Kb in size. And that’s
only for a small customer-orders
master-detail relationship. Do you
remember Issue 49, where we mea-
sured distributed efficiency? It
looks like we’re about to face the
same problem here: if we don’t pay
attention, all the available data
from the MIDAS application server
will be used to generate a (huge)
web page for the client browser.

For a TClientDataSet compo-
nent, all we had to do was change
the PacketRecords property from -1
(meaning: ‘send me all records as

data packets’) to a more sensible
value of 20, and pay attention to
DBGrids and DBNavigator compo-
nents (who could jump to the ‘last’
record in the table by sending the
entire table over the wire again). In
Delphi 5’s InternetExpress, the
equivalent of a ClientDataSet is the
XMLBroker component. And this
component has a MaxRecords prop-
erty which, again, is set to -1 by
default (meaning: ‘send all records
as XML packets’). We can set this
property to 20, and compile and
execute the web server applica-
tion again. MaxRecords indeed
limits the number of records that
are requested by the XMLBroker
component, and we only get the
first 20 customer (master) records
and all their orders detail records.
However, whenever we reach the
end of this list in the browser (by
clicking on the Next button 19
times or clicking on the Last
button), there seems to be no way
to get the next set of 20 records.
And if we think about that, it’s not
too difficult to understand why:
the MidasPageProducer requests all
available data (as XML packets)
from the XMLBroker, and produces a
web page to browse through these
records (with the data again pack-
aged in XML format). The
MidasPageProducer, however, does
not know anything about the fact
that the XMLBroker might have
access to more than 20 records, let
alone the fact that the XMLBroker
was limited in the number of
records in the first place. And
since MIDAS 3 is now stateless (at
the server side), there’s no help
from the application server either.

In fact, since the IAppServer
interface (which controls all com-
munication between the Data-
Provider on one side and
ClientDataSets and XMLBrokers on
the other side) is now stateless, we
need to maintain state at the client



November 1999 The Delphi Magazine 29

side, and send the state informa-
tion back to the server side when
needed.

With TClientDataSet, such an
event has been prepared for using
the OnBeforeGetRecords events, in
which we can put special
(location) information in an
OwnerData variable, which will be
passed to the DataSetProvider
OnBeforeGetRecord event. This way,
we can position a DataSet to a cer-
tain location right before new
records are provided. This works
like a charm using TClientDataSet.

We can use a similar approach
using XMLBrokers. Unfortunately,
it’s a bit more complex and
involves more steps. First of all, we
must make sure that our
InternetExpress application some-
how makes a callback to the web
server application (to trigger the
action that will request the next n
records). Then, we need to imple-
ment the above behaviour of the
OwnerData inside the OnBefore-
GetRecords events of the XMLBroker
and DataSetProvider in order to
position the DataSet and return the
next batch of n records. In theory,
it should all work. In practice, how-
ever... just watch and wonder with
us.

The FieldGroup is accompanied
by NavigatorButtons. However,
none of these buttons can trigger
an external event: they all ‘con-
nect’ to JavaScript code only. In
order to trigger an external event, I
would either have to modify the

JavaScript code (a topic
for another day), or
somehow create a new
button to trigger this
action. The latter solu-
tion can be implemented
by creating a QueryForm in
the Web Editor/Design of
the MidasPageProducer.
The QueryForm also gets a
special button: a
QueryValueButton. This
means whenever we
click on the button, an
event (Action) will be
triggered, passing a special value
inside a hidden field on the form.
This is exactly what we need.

Specifically, we need to take the
master-detail design from last
month (one DataForm with a
FieldGroup, DataNavigator, Data-
Grid and DataNavigator) and add a
QueryForm to it. Figure 1 shows what
this would look like at design-time.

By the way, never mind the
design-time warnings that say
XMLBroker1 is not connected. I’ve
deliberately disconnected the
XMLBroker at this time, because I
always want to make sure to dis-
connect all MIDAS ‘connection’
components at design-time before
I close a project. That way I can
always open a client project again,
even if the server is unavailable
(for whatever reason).

The QueryForm contains a
QueryFieldGroup and QueryButtons.
The QueryFieldGroup consists of
one QueryHiddenText field (with the
name HiddenRecNo, to identify the
fact that it contains the RecNo).

The QueryButtons contains one
button: a TSubmitQueryButton to
submit the query and trigger an
action from the web module. The
SubmitQueryButton triggers the
Action from its Parent QueryForm
component, or more specifically
the value of its Action property (a
full URL that specifies the name of
the web module as well as any
pathinfo, should that be relevant).
In our case, QueyForm.Actionpoints
to

http://localhost/cgi-bin/

Client51.exe/

CustomerOrdersMidasPageProducer

or just the same Web Module appli-
cation, with the same

/CustomerOrdersMidasPageProducer

path information. In other words,
we just start the same Action again.
The only difference is that this
action is started with a hidden
value of RecNo. And this value was
not present the very first time that
we executed the URL above. In all
subsequent events, the hidden
field RecNo would contain some-
thing, namely the current value of
the last RecNo that we’ve seen.

The SubmitQueryButton is visible
at design-time (see Figure 1 again),
and contains a caption, that cur-
rently says Next XML Packet. That’s
just something to show at
design-time. At runtime, I’d like to
show something like Next set of n
records and possibly something

➤ Figure 1: QueryForm
with QueryFieldGroup and
QueryButtons.

procedure TWebModule2.WebModule2WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);
{ Log is a simple debug statement that takes a String argument }

const
Str = 'Next set of %d records (currently showing %d-%d)';

var
RecNo: String;
RecNr: Integer;

begin
RecNo := Request.QueryFields.Values['HiddenRecNo'];
if RecNo <> '' then
try
RecNr := StrToInt(RecNo)

except
RecNr := 1

end;
NextXMLPacketButton.Caption := Format(Str,[XMLBroker1.MaxRecords,
RecNr,RecNr+XMLBroker1.MaxRecords-1]);

HiddenRecNo.Text := IntToStr(RecNr+XMLBroker1.MaxRecords-1);
Log('HiddenRecNo #1: '+HiddenRecNo.Text);
if DComConnection1.Connected then
Log('DCOMConnection = True')

else
Log('DCOMConnection = False');

{ next statement may cause XMLBroker to Request Records }
Response.Content := CustomerOrdersMidasPageProducer.Content;

end;

➤ Listing 1



30 The Delphi Magazine Issue 51

like Currently showing Y-Z. Since
the Method property of our
QueryForm is set to fmGet (so we’re
using the Get protocol), it’s easy to
use the QueryFields to see if the
HiddenRecNo field contains a value.
If so, then we need to set the
caption of the NextXMLPacketButton
and increase the HiddenRecNo value
by the number of XMLBroker.-
MaxRecords, see Listing 1.

Now, whenever we click on the
Next n Records button, the action
will fire, and as a consequence, the
XMLBroker component needs to
obtain a new set of records from
the (remote) DataSetProvider. Only
in this case, we’ll get an event first,
giving us the chance of positioning
the DataSet (referenced by the
DataSetProvider) to the exact
location of the new batch of
XMLBroker1.MaxRecords records.

Inside the OnBeforeGetRecords
event of the XMLBroker we can write
the code in Listing 2 to assign a
String value to OwnerData (contain-
ing the RecNo value where the next
batch of XMLBroker1.MaxRecords
records should start).

Note that HiddenRecNo was
already advanced by the number
of XMLBroker1.MaxRecords, which is
actually one time too many, so we
must decrement it again before we
assign it to the OwnerData variable.
The OwnerData variable is then
passed to the OnBeforeGetRecords
event of the DataSetProvider,

which it can use to position its
DataSet component to the right
RecNo, see Listing 3.

Now, all we need to do is lie back
and wait for the (correct) records
to be sent in. Unfortunately, it
doesn’t quite work that way. For
some reason (like I hinted last
time), every time we hit the Next n
Records button we increase our
internal state (the button will show
the next few numbers), but the
DataSet seems to start at position
one again, like always.

If you’ve played along with me so
far, you’re ready to try and debug
this behaviour. So, let’s start look-
ing for a place to fix. Since I didn’t
believe anything was amiss in the
InternetExpress Client, I focused
mainly on the Server application
(and the DataSetProvider) instead.
To see what was going on, I placed
some debug code on my
CustomerTable, specifically on the
OnBeforeScroll event (so I could
see where the table would be
scrolling to and when). This
showed that the table was actually
positioning itself correctly during
the OnBeforeGetRecords event. Only
to position itself at the very first

record again at the actual
GetRecords event. Ouch! A ‘reset’
was performed no matter where I
positioned my DataSetcomponent.
Surely, this is not the way
InternetExpress was intended to
work, unless I completely misun-
derstood the use of the OwnerData
variable and the text in the Delphi 5
Developer’s Guide on pages 14 to
27, which demonstrates the above
technique for ‘regular’ Client-
DataSets, which works just fine, of
course.

Dr.Bob’s Quick Fix
I did a lot of digging, and found a
few ways to solve the problem.
Possibly the best way is to take a
look at the call to TXMLBroker.-
GetXMLRecords (Listing 4) which
generates a call to the AS_Get-
Records method (ie the remote
application server and DataSet-
Provider) with the grMetaData,
grXML and grReset options. The
latter option is the one causing the
problems, as it resets the DataSet
we’ve just positioned. When I
remove that option, things work
fine again for me.

Note that I’m not 100% sure that
this fix has no unwanted side
effects. It works fine for me, in the
situation presented in Listing 4,
but I haven’t tested it against every
other InternetExpress application.
In other words: use it at your own
risk. And I welcome all feedback on
this at drbob@chello.nl (thanks in
advance).

If we apply the modified function
TXMLBroker.GetXMLRecords, and
recompile our project with the
updated XMLBrokr unit, then we get
the same result as last month, only
this time we have an extra button
that says (on the screenshot in
Figure 2) Next set of 3 records
(currently showing 10-12), and
indeed we see records 10-12
including the details. So it appears

procedure TWebModule2.XMLBroker1RequestRecords(Sender: TObject;
Request: TWebRequest; out RecCount: Integer; var OwnerData: OleVariant;
var Records: String);

begin
OwnerData := IntToStr(StrToInt(HiddenRecNo.Text) - XMLBroker1.MaxRecords);
Log('HiddenRecNo #2: '+HiddenRecNo.Text);

end;

procedure TTDM.CustomerOrdersProviderBeforeGetRecords(Sender: TObject;
var OwnerData: OleVariant);

var
RecNo: Integer;

begin
if OwnerData <> '' then begin
RecNo := OwnerData;
Log('DataSetProvider.OnBeforeGetRecords: '+IntToStr(RecNo));
with (Sender AS TDataSetProvider) do begin
DataSet.First;
while (RecNo > 0) and not DataSet.Eof do begin
Dec(RecNo);
DataSet.Next

end
end

end
end;

➤ Listing 2

function TXMLBroker.GetXMLRecords(var RecsOut: Integer;
var OwnerData: OleVariant; XMLOptions: TXMLOptions): string;

var
ByteArray: OleVariant;
Options: TGetRecordOptions;

begin
Options := [grMetaData, grXML, grReset]; // remove grReset here !!
RecsOut := 0;
ByteArray := AS_GetRecords(MaxRecords, RecsOut, Byte(Options),
'', PackageParams(Params), OwnerData);

Result := FormatXML(VariantArrayToString(ByteArray), XMLOptions);
end;

➤ Above: Listing 3 ➤ Below: Listing 4



32 The Delphi Magazine Issue 51

to work! Of course, a similar tech-
nique can be used for the previous
set of records, but I’m sure you get
the idea by now.

So, why spend so much time on
what is, at first sight, such a simple
feature? Mainly because of what I
pointed out at the beginning of this
topic: distributed efficiency is
becoming more and more impor-
tant these days. Especially for real
applications (which typically
require more than a few dozen
‘customer-orders’ records). And
although the above solution may
need a little while to get adjusted to
(we need to explain to users that
they can browse through a subset
of records, and request new
records ‘a set at a time’), it cer-
tainly reduces the bandwidth
problems.

In time, I’ll probably modify the
JavaScript behind the buttons to
automatically revert to a trigger of
the web module action once we’ve
reached the last record of the cur-
rent XML packet, but that’s a story
for another day.

Reconcile Error
Any multi-user application faces
the potential danger of update con-
flicts. Where user A and user B
both update the same record at the
same time, user A changes one or
more fields and user B also
changes some records (maybe the
same records). Posting the
changes only ‘saves’ them locally,
and with MIDAS we need to call the
ApplyUpdates method (of TClient-
DataSet) to actually apply the
updates to the remote dataset. So,
the first user (say A) can call
ApplyUpdates without a problem.
However, when the second user
(B) calls ApplyUpdates, an update
error will occur: the original values
in the record (passed on together
with the new values) do not match
the current values in the record.
Oh, no! Time for some human
intervention!

Experienced MIDAS developers
will know that Borland has pro-
vided us with a special Reconcile
Error Dialog to use in these situa-
tions. OK, I admit, you have to
know where to look for it, but it’s
there anyway. Open the Object
Repository (with File | New) and
go to the Dialogs tab. There, you’ll
see the Reconcile Error Dialog in

between the other (more
common) dialogs (see Figure 3).

If you select this dialog and
press OK, you’ll find you get more
than just a dialog: there’s quite a
lot of code ‘behind the scenes’ that
comes with this repository item
too. To use the dialog we simply
need to add a call to
HandleReconcileError in the
OnReconcileError event handler of
TClientDataSet, as in Listing 5.

The only other thing to keep in
mind is that we should make sure
that the Reconcile Error Dialog is
not one of the Auto-created forms
(which is now an option in Delphi
5, see the Preferences tab of the
Tools | Environment Options
dialog). Apart from that, using the
Reconcile Error Dialog is as simple
as one line of code, and it gives the
user the ability to select a possible
follow-up action (skip, abort,
merge, correct, cancel or refresh).
See Figure 4.

It should go without saying that
InternetExpress web clients can
also get into the same ‘update trou-
ble’ (just like any other MIDAS
client), but obviously we cannot
show a Reconcile Error Dialog
from inside a web browser. Fortu-
nately, Delphi 5 Enterprise intro-
duces the notion of a Reconcile-
PageProducer. Take a look at the
ReconcileProducer property of the
XMLBroker, where we can stick any
‘producer’ component. Unfortu-
nately, a regular PageProducer or

➤ Figure 2: InternetExpress
showing 3 records at a time.

➤ Figure 3: Finding the MIDAS
Reconcile Error Dialog.

procedure TRemoteDataModule.ClientDataSetReconcileError(DataSet: TClientDataSet;
E: EReconcileError; UpdateKind: TUpdateKind; var Action: TReconcileAction);

begin
Action := HandleReconcileError(DataSet,UpdateKind,E)

end;

➤ Listing 5



November 1999 The Delphi Magazine 33

➤ Figure 4:
MIDAS
Reconcile
Error Dialog.

a TableProducer won’t do the job
(and neither will a MidasPage-
Producer, of course), we need an
actual ReconcileProducer. So where
do we find a specific Reconcile-
Producer? It’s quite a bit hidden,
actually. In the DEMOS/MIDAS/
InternetExpress/INetXCustom dir-
ectory, you will find two packages:
inetxcustom.dpk (a runtime pack-
age) and dclinetxcustom.dpk (the
design-time package) named
InternetExpress Sample Compo-
nents that contain additional
InternetExpress components,
including the TReconcilePage-
Producer, which is quite similar to
the Reconcile Error Dialog.

The HTMLDoc property of the
ReconcilePageProducer contains a
pre-defined reconcile error dialog.
And although I have not yet been
abel to test it for myself, I am sure
that the ReconcilePageProducer
also works fine with the special
err.html HTML template file which
can be found in the very same
directory that holds the JavaScript
files (the SOURCE\WEBMIDAS
directory).

Golden InternetExpress
MIDAS 3 offers a lot of functional-
ity, but at a price. Deployment fees,
to be specific. There’s one way to
avoid this, and that’s the
standalone scenario. See

http://www.borland.com/midas/
papers/licensing

for more information about when
you need to buy a MIDAS licence. If
I understand this document cor-
rectly (and it still needs to be
updated for MIDAS 3), then in the
standalone scenario, we can use
either the TCli-
entDataSet or the
TDataSetProvider
to manipulate
data packets as
long as they
remain on the
same machine.

Well, that’s what we’ll be doing
here: we can create a standalone
InternetExpress application, with-
out using a ClientDataSet but with
using a TDataSetProvider and
XMLBrokers, that probably doesn’t
require a MIDAS licence (but if you
want to be really sure, you’d better
contact your local Inprise office).

If you take a look at Figure 5,
you’ll see what I mean. It’s a simple
WebBroker CGI application. We
start with a ADOConnection compo-
nent, and connect it to our local
DBDEMOS.udl file (with contains
the well-known customers and



34 The Delphi Magazine Issue 51

orders tables). Next, drop two
ADOTables on the Web Module, and
connect them to the ADOConnection
component. Select customer and
orders as the TableNames. Now,
drop a DataSource component, con-
nect it to the CustomerADOTable, and
use it to define a master-detail rela-
tionship between the customer and
orders tables (remember that due
to a bug in Delphi 5 it isn’t possible
at this time to define this relation-
ship using the Data Diagram tab of
the Visual Data Module Designer).

Now, after we have set up the
master-detail relationship, we
would normally need to export the
tables using a DataSetProvider.
That’s what we’ll do, but in this
case we won’t be needing to actu-
ally export them. Drop two
DataSetProviders on the Web
Module, and connect them to the
CustomerADOTable and Orders-
ADOTable. Now, instead of exporting
them, drop two XMLBroker compo-
nents on the same Web Module,
and connect these two XMLBroker
components directly to the
DataSetProviders. Without needing
a connection (or connection proto-
col) between them. Since we won’t
be needing a connection, we won’t
transfer any data from one ‘tier’ to
another, so I believe I can safely
state that this is a fair example of
‘standalone use’ of the
InternetExpress technology.
Which should be royalty-free.

The final step consists of adding
a MidasPageProducer, and setting up
the web page like we’ve been used
to. This time, the master XML
records will come from the
CustomerXMLBroker component,
while the detail XML records will
not come from a nested dataset (if
we try to open the XMLDataSetField
property editor we’ll get an error
message), but instead ar eavailable
in the second XMLBroker compo-
nent: OrdersXMLBroker.

There’s one thing to be aware of:
inside the Web Editor (of the
MidasPageProducer), we should
explicitly add all fields we want to
see inside a FieldGroup or DataGrid.
Otherwise, we’ll see some data and
fields at design-time, but nothing at
all at runtime (if is not explicitly
created, it’s not really there at all!).

Finally, I want
you to realise that
this technique (of
using Internet-
Express and two
logical tiers with-
out actually need-
ing two phyical
tiers) can be used
with ActiveForms
or ‘normal’ Windows applications
as well, of course. And using ADO,
you are still spared from having to
use the BDE [Hooray! Ed].

Next Time
In the past two columns we’ve seen
how to use InternetExpress to
create distributed internet applica-
tions. Next time (in the third and,
for now, last instalment of this
topic), we’ll see how we can extend
InternetExpress, by producing
custom add-on components that
plug right into the Web Editor.
We’ll also explore ways to enhance
the layout of the resulting web
pages and see techniques to debug
InternetExpress applications, not
an easy task once you realise the

➤ Figure 5:
Standalone
InternetExpress
Application.

tricks that your web server can
play with you. Yes, Internet-
Express is fun and powerful, but
you ain’t seen nothing yet, so stay
tuned...

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is an IT
Consultant for TAS Advanced
Technologies and a freelance
technical author.


	Last Time
	This Time
	AutoSessionName
	Unlimited Data
	Dr.Bob’s Quick Fix
	Reconcile Error
	Golden InternetExpress
	Next Time

